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This paper is devoted to the study of the hydrodynamic stage of a two- 
component dense fluid. Starting from the BBGKY hierarchy obtained earlier, 
we first derive the expressions for the generalized fluxes. We proceed to set 
up the generalized kinetic equations, using Bogoliubov's functional assump- 
tion. Then we solve these equations by means of a Chapman-Enskog method. 
The generalized expressions for the transport coefficients are thus obtained. 
All our results are independent of the existence of density expansions of the 
relevant quantities. 
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1. I N T R O D U C T I O N  

This paper  is devoted to the study of the linear t ranspor t  coefficients for a 
b inary  mixture  of dense gases. The purpose is to obta in  general expressions 

for these quanti t ies wi thout  reference to a density expansion.  In  this sense, 
it is a general izat ion of the work done for a one-component  dense gas by 
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by Garcia-Colin, Green, and Chaos (GCGC). I1) Indeed, we start out from 
the set of equations for the single-particle distribution functions of each 
species which have been previously derived? These equations together with 
the Bogoliubov assumption that the distribution functions of more than one 
particle are time-independent functionals of the single-particle distribution 
functions, yield the two coupled kinetic equations of our system. After 
linearization of the kinetic equations in the gradients of the system, we set 
to solve them following the standard Chapman-Enskog method. In this 
way, we obtain the general expressions for the transport coefficients in terms 
of the intermolecular potentials. 

In Section 2, we outline the derivation of the hydrodynamic equations 
for a binary mixture starting from the BBGKY hierarchy. In Section 3, 
the generalized kinetic equations are linearized in the gradients, a result 
which is used together with the hydrodynamic equations in Section 4 to 
solve for the perturbation functions following the Chapman-Enskog method. 
Due to the fact that the solutions obtained in Section 4 are given in terms of  
the gradients of macroscopic variables which are not the conjugate ones of 
the hydrodynamic fluxes, a transformation to the appropriate gradients 
must be made. This point is discussed in Section 5. Finally, in Section 6, we 
obtain the explicit formulas for the transport coeff• These formulas 
are given in terms of functions which still obey linear inhomogeneous integral 
equations that can be explicitly solved when a specific model for the inter- 
molecular potential is chosen. The structure of these coefficients within the 
context of the new ideas proposed by two of us TM which yield divergenceless 
terms in their density expansions will be given in a forthcoming publication. 

2. H Y D R O D Y N A M I C  E Q U A T I O N S  FOR A B I N A R Y  M I X T U R E  

In this section, we will sketch the way in which the hydrodynamic 
equations for a binary mixture are obtained. 

The first and second equations of the BBGKY hierarchy for the binary 
mixture were obtained in I. They can be written as 

2 
= Z f dxo~,~(ez, ",')O'ec~(X'el' Yc~,~e(~,'e))J~4-e-o~}{~'+c~-2}(Xvl' Xa,'~(a,~') ; t ) ,  

~, = 1, 2 (1) 

3 Hereafter referred to as I. We use the same notation as in I. 
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and 

(--~- + ~ 4 ~ 4 )  f ~ o ~  

2 2 Sa 

13=1 c~=l i = 1  

s , . s ~  = 0. 1.2. s,. + & = 2 (2) 

Here we have used the distribution function)q,o}{,~} defined by 

f{<){~O = nSanSbb'F(sa}{so} (3) 

The rest of the symbols were defined in I. 
From these equations, we can obtain the hydrodynamic equations for 

the binary mixture following the standard technique first outlined by Choh 
and Uhlenbeck. In fact, multiplying Eq. (1) by 1, p,z, and (p~l/2m,) and 
integrating the resulting expressions with respect to p , , ,  we obtain the con- 
tinuity equations, the equation of motion, and the equation for the conser- 
vation of kinetic energy, respectively, given by 

8n~/St = -- div(n~u) -- div(J~/m~) (4a) 

So~St = -- div(pu) (4b) 

p Du/Dt  = -- div P 

D 
(~23 0) -k div j~ -? P : D -- div(u �9 W) (5) 

Dt 

2 ~ f  f C~Vm, , p~,l - Z Z d p , x  dx~.~(~,,) aq,~ m, 
"r c~=l 

• A4-~-~}{~+~-~}(X~l. x~.ea..r ; t) (6) 

In these equations, we have used the expressions 

n., = f @,,Jh_,)(,_z}(x,O, r = 1, 2 

Jv = f dP~,,1 (~.,./1/rFL,/) f{2-y}{.,/-1}(X,1), y = I1, 2 

2 

u = (l/p) ~ f alp,, P,lJi2-,I{,-z}(x~z) 

2 

= (~;ff2m~) f(2-,} {,-1}(x~1) 

(7) 

(s) 

(9) 

(1o) 
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which are the definitions of the particle density and mass flux of each species, 
the velocity of the center of mass of the system, and the temperature, 
respectively. 

As usual, the mass density is given by p~ = m~n~ (y = 1, 2), the total 
2 2 

mass density by p = Z~=z p , ,  and the total number density by n = ~y=z n , .  
Moreover, we have introduced l~,i = P , i -  m,u, the operator D / D t  
(O/tt)  q - u .  grad, and the deformation tensor D whose components are 
D u  = (�89 + (Ouj/~qi)]. We have also written 

~:(% y) = (~ -- 2)(2), -- 3) q- y (% y = 1, 2). 

The stress tensor is given by 

P = P'~+ e~ ( I I )  

w i th  

2 ~ J{~-,}{~-z}(x,o (12) p k =  Z f 15/~3'11~>'1]~/1 r / x 
7=1 

p~=__k k i r,.r,, , fo* 

• f{4-,-~l{,+~-2}(q,~ --/~r,~, q,~ + (1 -- N r,~, P,1, P~,e(~.,) ; t) (13) 

! 
Here, r,~ ~ q,, -- q~,e(~.,), and q~ denotes the derivative of ~%~ with 

respect to its argument. 
The kinetic contribution to the heat flux jk is expressed as 

jk = k f dpyl  ~yl ~1 ~=1 m~ 2nh, f{2-~}{~-z}(x,,1} (14) 

Multiplying Eq. (2) by �89 integrating over p,~ and x~,e(~,, ) , and 
summing over y and % we find that 

e (,e)+'k k 

• (P,1 . t P~,e(-,,). ~ ) 
my ~q~l -5 ms ~q~,e(~,~) 

• f{4-,-~I{,+=-2}(x,1, x~.e(~.,) ; t) = 0 (15) 

Here, 

F/Ew = 2 v=l a=l 

• f{4-~-~){~+~-2)(x~z, x~,e(~.~) ; t) (16) 
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Adding Eqs. (6) and (15), we find the total energy equation 

n(De/Dt) -t- div j = --P : D (17) 

where the total heat flux j is 

with 

j = j~ + F ~ + j~ (18) 

1 2 ( i~i 1~.~(~.~) .) 

fO 3< d/xf(4-v-~}{v+c~-2I(q~a - -  ~ r w ,  qv l  -l- r ,~(1 - -  ,~), p , 1 ,  P~,e(~,~,) ; t )  
(19) 

(20) 

1 ~ 1~ ~o~(,~) 

and jk given by Eq. (14). 
The total energy density e is 

= 80 + ,~ (2~) 

3. K I N E T I C  E Q U A T I O N S  

In order to obtain the kinetic equations for a binary mixture of dense 
gases, we proceed in a similar way as is done for a one-component gas. (1) In 
fact, we assume that in the evolution of the mixture toward-its equilibrium 
state, there exists a stage, the so-called "kinetic stage," in which the distri- 
bution functions of two or more particles are time-independent functionals 
of the two single-particle distribution functions. That  is, 

ZSa~o;(''" ; t) ~f~o~(s0~(''" IZI~0~ ,f~0m~), Sa, Sb >~ 0, Sa + Sb >~ 2 (22) 

We would like to stress that the explicit forms of these functionals have 
been obtained in I as power series in the density. However in this paper, 
we will not use these explicit forms, because we want to obtain general 
expressions for the kinetic equations and linear transport coefficients without 
any reference to a density expansion. 
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Substituting these relations into Eq. (1) one finds that 

( a  P~x. ~ ) 
~- m., aq~l f(2-'}~'-zI(x'l) 

2 

c~=1 

2 

~ gi~(X~l If{l}{0} ,f{o}{1}), y = 1, 2 (23) 
c~=1 

i t  should be noticed that the two equations (23) form a closed set of 
coupled equations for f{~}{0} and f{0}{,}, and they constitute the kinetic 
equations for our system. 

Due to the fact that it is our purpose to obtain linear transport coef- 
ficients, we proceed to localize the kinetic equations. We obtain the following 
results: 

~ -  - t-  m ,  a q ,  1 f { 2 - ~ ) { " - l } ( X ' l )  

2 

c~=l 

2 2 

c~=l v=l " 

/ a~2_~}{~_~}(x ) \ 
• (q' -- q,1)" [- aq I -),, =0,~ , ), = 1, 2 (24) 

In these expressions 

is the functional derivative of qS,~(x,~/fa~0}, f~0~(l~) with respect to the single 
distribution functionf(~_,}~_~} taken at the phase point x'. 

In the next section, we will solve Eqs. (24) using the Chapman-Enskog 
method. 

4. T H E  C H A P M A N - E N S K O G  S O L U T I O N S  OF  T H E  
K I N E T I C  E Q U A T I O N S  

We will use the Chapman-Enskog method in order to solve the kinetic 
equations for the mixture obtained in Section 3. For this purpose, we expand 
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the one-body  distribution funct ion in a power  series of  the macroscopic  
gradients o f  the system, and keep only linear terms: 

f{2-,I{,-a} = f}z_,I{,_a}(1 q- qS{2_,}{,_a}), y = 1, 2 (25) 

where f{~-r}{v-z} is independent  of  the gradients. 
Substi tuting Eqs. (25) into Eqs. (23), (7)-(10), (11), (17), and (18), one 

finds the following results. 

4.1. Z e r o t h  O r d e r  in t h e  G r a d i e n t s  

To this order,  one obtains f rom the kinetic equations 

2 

qS~(x.1 if(~}(0I(q.]),f~0I(1}(q.l)) = 0, Y = 1, 2 (26) 
a = l  

As usual, the solutions to these equations are given by the Maxwell ian 
distr ibution functions 

f{g-.,}{~-l}(x) = n~ exp \ , 7 = 1, 2 (27) 

with ~l~ = p - -  rn~u. 
Fur thermore ,  one finds that  the stress tensor is given by P = pl, with 

2 2 

"y=l  ~ = 1  

• Y]4-.~-~}{,+~-~.}(q,,, q~, + r ,~,  Pvl, P~,e(~,v) ]f{%}{o} ,f~o}{~}) (28) 

where I is the unit  tensor. To  this approximat ion ,  all other fluxes vanish and 
therefore the Euler equations for  the binary mixture are 

an,/at = --div(n,u) ,  7 = 1, 2 (29) 

au/at = - - u  �9 grad u - -  ( l /p)  g r a d p  (30) 

&~at = - - u  . g r a d  e - -  (e + p ) d i v  u (31) 

Finally, one obtains that  the local macroscopic  densities are 

= f d e ti.,, p,lf{z_,i{~_a}(x~l), y = 1, 2 (32) 

2 

u -- (l/p) y, f dp , 1 P,lf~2-,}{~,-a}(x,1) (33) 
V = I  
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9 ~ 9 "> 
~ =: s J dpT1 !lt~l e 1 ,/s c~l " f ,=z ~ f / ' > .  ,if-, z/(x-,,) § ~ = = J dp,z dx<,.<(r 

. ' e g • %~(r.,~).fl.l-~-~it~+.~-~i(x.,,z, x:,e(~,,) fu,~(ol ,f,~oi{l} (34) 

4.2. First O r d e r  in the Gradients  

T o  first  o rde r  in the  gradients ,  one  ob ta in s  the  fo l lowing  set  o f  in tegra l  
equa t ions  fo r  r : 

2 
A.~: �9 g r ad  In n~ + C~ �9 g r ad  In 0 T D~ div  u -i- F, : (g rad  u).~ 

a=-I 

2 

f " �9 - ~ dp' M~,,12_.)l._il(x, ll' i /Ullol ,f}oil,1) 
v-d 

x f~'2..-,/~,-ll(P') 4>:_~--.ll,,..xl(P'), ~, = 1, 2 (35) 

Here ,  we have  wr i t ten  

A.,~, = f{~_-/}{y_l}llt~,l [- ~yc, 

2 

X (q' - -  q,z)J(2--,,il,-~.l(q~,l,e p,), y, ,x = 1 ,2  (36) 

C .  = Jlz-~,/l-,,-z} m~  2m.~ 
3 (,) ] 
2 ' p ~-0,~ 

2 

v=l 

X (q' - -  q.z)f~z-.}{.-,l(q~z, P )k-2-~O 2m~O ' "/ ...... i ,  2 (37) 

1 s r x . . . .  , : fal(oi,.flol Ixl) 30 v=l 

x J ~ - ~ - l l ( q - , z ,  P ' )(q '  - -  q~O" (~az -t- PbO, y - -  1 , 2  (38) 
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1 

0 dx'  Ms'.{2-,}{~-a}(x,1 x ' l  " ,f~0}{a}) 
V=X 

• f{~-.}{.-1}(q,1. P'){�89 -- q.z) ~ -5 ~;l(q' -- q,1)] 

1 ! - -  ~p~.~ �9 (q'  - -  q ,~ )  I}. y = 1 . 2  

and 

(39) 

9- 

,~.{z-~}{~-l}, y ,  v = 1 . 2  ( 4 0 )  

In Eqs. (35) and (39) the symbols (grad u)s and (pp)~ denote the symmetric 

(1/ms') dP3~2-.}{5"-1}~r = O. ~ = 1.2 (41) 

2 

Z (1/m~) f dp PJq~-~}{~-l}r = 0 (42) 
5 ' = 1  

2 

f alp' E~2_~}{~_l}(qv 1 , P" [Ji~}{o} ,f{o}{1}) 
V = I  

, p ) f~2-~-l~(q~l, p') x 
2 

@ ~. f dx' e/~_~i{._l}(q~l , x '  ~ ' I f(1){o}, f{om~) 

• (q' - q~) .  ( 7~2 ~" ~ ( x ) )  = o (43) 

, ( ( p ' )  ...) 
e{2-v}{~-l} q,z, x' 

denotes the functional derivative of E(q,1 I "" ") with respect to the one-particle 
distribution functionf{2_v}{,_l} taken at point 

Here, 

and 

traceless parts of the tensor (grad u) and (pp), respectively. 
The set of linear inhomogeneous integral equations (35) for the pertur- 

bation functions r has to be solved subject to the following subsidiary 
conditions: 
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As it has alrealy been discussed in a previous paper, (~ the solution to 
Eqs. (35) depends on the structure of the kernels which appear in the homo- 
geneous terms (cf. Eq. (40)]. Although algebraically more involved, it can 
be shown by the same procedure as followed in the paper by GCGC that 
each of these terms has the following properties: 

(a) The right eigenfunctions are 1, p~, and p~ (~, = 1, 2) for each of 
the species. 

(b) The left eigenfunctions with zero eigenvalue corresponding to the 
equation for species V are 1, i6,, anh e}z_~_l>(q,~, x' If~]~0} ,f~){z>), the 
functional derivative of the total energy taken with respect to the two one- 
particle distribution functions. 

(c) These left eigenfunctions are orthogonal to the inhomogeneous parts 
of Eqs. (35). 

Under these conditions, the solutions to these equations exists, but are 
undetermined up to a linear combination of the solutions to the corresponding 
homogeneous equations. However, the five arbitrary constants in the solution 
can be uniquely given with the aid of the five subsidiary conditions (41)- 
(43). This standard procedure leads to the result that 

2 
$~_,~,_~l(p) -- ~ ~r grad In n~ + ~,~10, " grad In 0 

+ N, div u + ~(I~,I~,)~ : (grad u), ,  y = 1, 2 (44) 

where the coefficients ~r W,, ~ , ,  and ~ (~, ~ = 1, 2) satisfy the following 
linear inhomogeneous integral equations: 

(A~.~,) = ~ f dp' M~,,~2-v}{.-l}(x, P' [ft]~{o~ ,fi%~z}) 
C, /  v=l 

xJ~2-,I{v-~I(P)l~, T, (!~,), 7, c~= 1,2 (45) 

= / ' ~ , Ji0~lz~) 
u=X 

~ r  

• f~-~l~-z~(P') ~,(/~,'), y = 1, 2 (46) 

F~, 
2 

= y~ f dp' M~,.~2_.~._lr(x, p' !f~o~ ,f~;m~) 

• N2-v)~.-z~(P 1(1~. I~, )~ ,~'.(I~. ), ~, = 1, 2 (47) 



On the Nonequilibrium Statistical Mechanics of a Binary Mixture. Ii 259 

subject to the new subsidiary conditions 

f dp p ~ f{;_,}{,_~}l~, c~, = 0, c~ = 1, 2 (48) 

= 1, 2 (49) 

In the derivation of Eqs. (44), use has been made of the fact that our 
system is considered to be an isotropic one, so that the tensorial character 
of the solution has been already accounted for in the usual way. Iz) 

In contrast to what happens in the one-component system, Eqs. (44) are 
not suitable for computing transport coefficients. Indeed, the thermodynamic 
forces represented by the gradients of the macroscopic variables which appear 
in them are not the conjugate ones to the fluxes defined by Eqs. (8) and (12) 
and 

2 

J7 = J--  ~ (h~/m~)J~, (50) 
c~=l 

where j is given by Eq. (18). 
We know from irreversible thermodynamics (4~ that such forces are A~, 

A 2 , and grad 0, where 

A, = (1/m,)[grad/L, ~- (s,/k) grad 0], y = 1, 2 (51) 

~, being the chemical potential per particle of species 7, s, the partial entropy 
per particle of species y, and k Boltzmann's constant. Furthermore, h~ is 
the partial enthalpy per particle of species ~. In the following, we shall discuss 
the structure of the solution to our set of integral equations in terms of the 
latter representation for the forces. 

5. T R A N S F O R M A T I O N  O F  T H E  C H A P M A N - E N S K O G  
S O L U T I O N  

As was pointed out in the previous section, the computation of transport 
coefficients for a binary mixture of dense gases adequate for directly com- 
parison with experiment, requires that the solution to the kinetic equations 
should be expressed in terms of A,~, grad 0, and grad u. This implies that 
Eqs. (44) must be written as 

2 

~{'~-~}{,-1}(P) ~ ~ ~ I ~ ,  " A~ + ~ t ~  �9 grad In 0 
a--1  

~- N div u + ~(~,!~.~)s : (grad u)s, 7 = 1, 2 (52) 
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where the coefficients ~ and ~ ,  are to be determined. For  this purpose, we 
must eliminate the terms containing grad n, in our former solutions in favor 
of the A , .  Since 

~ = ~ , ( n ~ ,  n ~ ,  0), ~, = 1, 2 (53)  

the transformation is given by [gradln0] [100  [gradln0] 
(1/0) m~A~ = E1o E~ Exz �9 grad In n~ 
(1/0) mbA~ E2o E~ E2~ J grad In nb 

(54) 

where the elements of the transformation matrix are given by 

E,  ~ _ 2s~ E~ n~ ~/z~ 
k ' -- 0 ~n~' c ~ , y =  1,2 (55) 

Since we are interested in the inverse of the transformation, we must 
require that the transformation matrix has an inverse, i.e., the determinant 
of such a matrix must be different from zero. By irreversible thermodynamics, 
we know that both sets of thermodynamic forces are linearly independent 
and therefore using a well-known theorem (4) the inverse of the transformation 
matrix must exist. 4 Hence, 

[grad n0] 00] [gradln0] 
gradlnn~ = blo bll bz2 �9 (m~/O) A~ 
grad In nb [_ bzo b21 b~2 (m~/O) A~ 

(56) 

where the elements of the inverse matrix are given by 

1 2 #/z~ ~/zs_ ~ 
b~o = 3 -k-0- n~_~ (ss-~ an3_~ s~ --ans_~ ) 

A 0 an3_ ~,  ~ , 7 =  1,2 

(57) 

Direct calculation of the determinant yields as a result that this condition is equivalent 
to the requirement that 

0tx~ ~/~b ~tza ~/x~ A-- # 0  
Ona Onb anb aria 

This has already been proved explicitly to the first order in the density in Ref. 5. 
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Making use of these results, one finds that the new coefficients appearing 
in Eqs. (52) are given by 

2 

~ = Z ~ b , ~ ,  ~, y = 1, 2 (58) 

2 

= + Z 4 b o, e = 1, 2 (59) 

These results may be used to compute transport coefficients and this 
will be the subject of the next section. 

6. T H E  T R A N S P O R T  C O E F F I C I E N T S  

In order to calculate transport coefficients, it is necessary to obtain 
explicit expressions for the diffusion currents, the heat flux, and the stress 
tensor obtained in Section 2 which are localized around the observation 
point q,~, and which are also linearized to first order in the gradients of the 
system. Such expressions can be derived following the procedure which was 
discussed in Ref. 1. Using these results together with the formulas for the 
fluxes given by Eqs. (8), (12), and (50) and the solutions to the inhomogeneous 
integral equations obtained in the previous section, i.e., eq. (52), we obtain 
the following results. 

(a) Diffusion current: 

2 

J~ = --L~o grad In 0 -- ~ L~A~, ~ = 1, 2 (60) 
- e = l  

where 

L~~ -- 3m~l f dP~l~/(2_~)~_l~(/~)~ ~ ~,(ff~), ~ = 1, 2 (61) 

L~  -- 3m~l f dp ff~ ~e_~}{~_1~(/~)2 ~ ~,(ff~), c~, y = 1, 2 (62) 

The coefficients L~0 are the thermodiffusion or Soret coefficients, and 
L~o~ are the mutual diffusion coefficients. 

(b) Heat flux: 

J~ = --Loo grad In 0 -- ~ Lo~A . (63) 
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where 

Loo = _ 

and 
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i 1 4 e 
y=l  

+k L,o--l--kkZ fdpr fdx ,*'o,,'fdP' 
mr 12 ~,=1 ~=i ~,=i v=l 

"/r~ mr 

• 2i;-~-=~r+~-=~,~=-,~,-l~(qr~, qr~ + rr~, p~ ,  P=,~<~P' i f~{o~ ,f~om~) 

' k k k f p =j *<= r> f W;" 'r= �9 q-  ~ , 
12  7~= mr a=l y=l V=I 

] 

• ft~-r-~}{r-.-~),{=-.}t.-a}(q~l, qrl - r  rr=, Pvl, P=,e(=,~), x' I f{~}{o}, f{o){,)) 

16r~ i ~ k ~ ~dP.~fdx.,e(=,.)fdP'%=m,~'!J/ 
6 ~=, ~=i ,=i 

• fd-~-=~r+=-,~.~>,~,-Kq~, qr~ + r~, p~, p~.~(~.~), p' i f~{o~ ,fto%~) 

• ,) cg,(l~- ,) 

i k k ~, f dp.,l j'dx.,e(=..)f d x ' % = - - ' ( q ' - -  q.O 
6 mr a=l r = l  v=l 

X f{4--v--ot}{-/+a--'~},{2--v}{v--1}(qrl, qT1 -~- r y e ,  P r l ,  Pa,#(~,v) , Xt /,/i~}{o} , f{~}{1}) 

• ~%(P') Jil-.){.-,)(P') (64) 

1 f 
Lo~ -- - -  - -  r = l  6m~2 J dp~,lfl~,lf{2--.~}4 e {w_l}(~/1 ) ~ t ~ ( f l r l )  

+k h~L~--lk k k  fdp. fdx~,~,~.~>fdP ' mr 12 ~,=I a=l y=l v=l 

X �9 ~, ~ ( ~  ) 



On the Nonequil ibrium Statistical Mechanics o( a Binary Mixture. !1 263 

and 

12 7~ \ m~ ' m~ / a~l  3"=1 v=l  

' 1 J]  ~} {o}, Jq o} a})  • f{4-3"-~}W+.-2}.{2- , ,}{~-~}(q3"z,  q3"1 - -  r 3 " .  , P c , ,  P~,e(~.3"), x '  ' e 

X f{~-~}{.-z}(P') ae.(L~') r.~" (q' - -  qe,) 

I~3"1 ' L ~ L f aPel f dxo.,'~,e' f aP'~e~--7"": 
6 c~=1 e=l  v=l 

X J~;-e-~}{3"+a-2},{z-v}{.-1}(qvl , q,/1 -~- re~, Pc1, P~,e(a,;,) , P' IA{}{o}, Nora}) 
t -- t 

X h2-.}{.-1}(P ) ~ . ( g  ) 

-- ~3"1 
' Z k Z f ap3"i f a..:.,,=e, f ax'~e=--'(q'-q.O 6 ~=13,=1 v=l ' ' m e  

• ~3".(P') f~-.}{.-1}(p') (65) 

In these expressions, we have written 

c % ( ~ )  = (ff3"2/2meO) - -  ~- - -  b.~o, (66) 

% .  = (be . /O)  m .  (67) 

The coefficient Loo is the heat conductivity and the coefficients Lo. are 
the Dufour  coefficients. 

(c) Stress tensor: 

P = pl - -  2~/(grad u)~ --  ~ div u I 

where 

l k f dPyl  ~ f {~ - -e } { ' , / - -1 } (~3" l )~ (ad1~3"1)  
15 3"=1 3" 

(68) 

1 k k k fap~fap~,~,~.fdr~fap' + 

X Na-e-~}W+.-.~}.{2-.}{.-~)(q.~. q,~ + r ,~.  po/~. P~.e(~.,). P '  lY~I}{O) .f{o}a}) 

X 
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f f f 200 2 2 2 dp~,~ dp~,,(~..) dr.~ dx' 
a=l ~=1 v=l 

• fi~-~-a{~+~-2},{e-~}{~-~}(q~x, q.n + r ~ ,  P~I, P~,e(~,~), x'[f{~}{o} ,f~}{z}) 
t 

~D~/o~ e t 
• r~  f~ -~ -1~ ($~  )[r.~ �9 (q' - q~) r ~ .  p~' 

1 2 4 ~  t 
- -  ~ 7~,~,y~ " ( q ' - -  q~a)] ( 6 9 )  

- 3 : - + ~ - ~ - 1 ~ o  & ( ~ )  

§ fi i f dp., f f dr.  f dp' 
a = l  V = I  v = l  

t g 

X 9~r~f{~_,}{~_~}(2,') p~ '"  (q' -- q~,) (70) 

The coefficients ~? and ~ are the shear and bulk viscosities, respectively. 
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